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I. Introduction

Programmable logic arrays (PLAs) provide an efficient and flexible way to implement general

modules for combinational systems in a regular manner. Similarly programmable sequential

arrays can be formed by including storage cells together with the logic. These arrays can be

programmed to implement general modules of sequential systems. While implementing

Boolean functions with PLAs, a general logic function is first represented in a

sum-of-products terms. Then, a two-stage NOR network (with NOT function added to both

input and output) is used to map the logic equation to gates.

While nMOS realization of NOR gates is quite good and straightforward, static CMOS/bulk

NOR gates present many problems [1]. First, while the better devices (n-channels) are in

parallel, the worse devices (p-channels) are in series, which makes the gate slow. In fact, an

NAND/NAND structure is generally used, which puts the better devices (n-channels) in

series. Second, since both n-channel devices and p-channel devices are required, well

location must be carefully arranged and the total area needed is large. Domino CMOS [21

r ethod is used to implement small precharge PLAs in CMOS/bulk. The standard approach

is to use a precharge NAND structure to implement the AND plane of the PLA and to use a

precharge NOR to implement the OR plane. In between the planes and at output NOT is

used. This approach is nice because there is no charge sharing possibility in precharge NOR

gates. However the main disadvantage of thi,, i ino PLA is that with large input terms, the

series AND in the NAND gates is still slow. L, t, the delay is quadratic in the number of

literals in series. As a result, it is desirable to have a precharge NOR/NOR typed of PLA

structures in CMOS. Unfortunately, the precharge NOR gate cannot be concatenated directly

to form a NOR/NOR PLA structure. This is a result of having the output of a precharge NOR

gate goes from one to NOR. If this output is directly connected to the input of another

precharge NOR gate undesired discharging will occur.

For
Thus, one must include some timing strategy to prevent unwanted discharging. In this paper, I

delayed clock is used to precharge the OR plane, which allows the concatenation of NOR 1 C

gates. We will discuss the circuit and its timing strategy in the following sections. This PLA - a

structure has been adapted into Berkeley PLA tools [3]. Optimization and auto-generation

of general Finite State Machine (FSM) is available to the public. 1/
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II. Circuit Description

Several dynamic CMOS NOR/NOR PLA structures have been suggested [1] [4] 151 [6] [9].

The proposed approach is similar to [4]. A schematic diagram of the circuitry is shown in

Figure 1. The AND plane consists of the normal precharge NOR gates arranges as one row

per implicants. It is precharged during the low clock signal and it is evaluated when the clock

signal is high. On the top of the AND plane is a dummy row. For each of the input literals, a

diffusion area equals to the drain area of a pull-down transistor is added to the dummy row.

As a result the total parasitic loading on the dummy row is greater than any of the implicant

row. Since it is also precharged by the same clock signal as the rest of the implicants, it

discharges at the worst-case rate in comparison with the rest of the rows. This slowest

"dummy-implicant" is inverted to produce the delayed clock. This delayed clock is then

used to precharge and evaluate the OR plane NOR gates. By the time this delayed clock rises

to evaluate the OR plane logic, all implicants has settled to its desired output of either high or

low state. Hence, no undesirable discharging by the OR plane NOR gates can occur. Outputs

from the OR plane NOR gates are latched by static flip-flops. These flip-flops are gated by

the inverse of the input clock and the delayed clock. In effect, the latched output will change

its state only after the trailing edge of the input clock signal. This will warrant no undesirable

discharging when concatenating blocks of these PSA. Moreover, this PSA structure is static

from a system point of view.

With the absence of clock signal switching, the state of the output latches will stay unchanged

holding the previous values. A detail circuit diagram implementing the logic function

F(A,B,C,D,E) = ABC+DE is given in Figure 2. The logic is as follows: Since I1 =

(A'+B'+C')' = ABC; 12 = (D'+E')' = DE; f = (11+12)' and F=f', therefore we have F =

ABC+DE. There are cut-off transistors for both the AND and OR planes of the PSA to

make sure that there is no direct path from Vdd to ground during the precharging phase.

While the AND-plane NOR gates have only one "cut-off" transistor per gate to disconnect

the inputs when precharging, the OR plane NOR gates need two transistors in series to cut off

the input during precharge period. The detail timing strategy will be discussed in the following

section.
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III. Timing and Electrical Design Consideration

Only a single input clock is required. This reduces the routing area used for clock signals

between blocks. Moreover, a single-phase clocked functional block, such as the PSA

suggested, simplifies the overall system timing strategy [7]. Additional clocks needed are

generated by the PSA. A timing diagram is given in Figure 3. There are total of four clock

signals containing eight clock edges used to control this PSA structure. They are named A

through H as depicted in Figure 3.

Region 1 is bounded by edge C and edge H from the previous cycle. Region 2 is between

edges C and D. Region 3 is between edges D and E and region 4 is defined by edges F and

H.

During region 1, AND-plane and the OR-plane of the PSA is being precharged. During

region 2, AND-plane is evaluating. During the period of region 3, OR-plane is evaluating.

Finally, the output is latched during region 4. A timing gap exists between region 3 and 4 to

ensure that clock overlapping or clock skews will not create undesirable discharing of the

dynamic NOR gates. Input should be valid before edge A and output will be valid shortly

after edge H. Output will remain unchanged until shortly after the next edge H. As a result,

outputs of this PSA structure can be used as input signals for the same PSA or other PSAs

directly. The total delay contributed by the worse-case "dummy-row" and worse-case OR

plane should not exceed the pulse width. Clock period must be longer than the sum of output

latch settling time, the total delay from the PLA, and A, where A is the delay contributed by

inverting the input clock. This single-phase clock timing strategy does not have two-sided

relation to satisfy [8].

To avoid noise problems, the layout should not connect Vdd or ground through diffusion

layer. Although using diffusion may result in a more compact circuit, the noise problems as

well as the speed slow down due to resistance do not payoff. We connect all gated-ground

and gated-Vdd with metal layer only. Conforming to the MOSIS scalable CMOS rules (rev.

6), we obtain a 8x12 lambda pitch for the AND-plane and a 12x16 lambda pitch for the

OR-plane.
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IV. Example

A 4-bit counter is implemented. First, a finite state machine is described with PEG [3]

specification. It is then automatically translated to logic equation format using the~software

PEG [3]. Logic equations are converted to truth table via EQNTOTT [3]. ESPRESSO [3] is

used to simplify the truth table. Finally, MPLA [3] is used to generate layout in Magic

format. The resulting PSA is measured at 194 A±m by 343 gm in size. This counter is

fabricated with a MOSIS 2 ;im TinyChip. It is functional at a clock frequency of 50MHz.

The layout of a fabricated chip is provided in Figure 4.

V. Conclusion

Programmable Sequential Arrays are useful parts of many digital designs. They can be used

as building blocks of a general finite-state machines. They can be used as controllers for a

processor. The CMOS PSA structure described provides a simple and flexible single-phase

timing strategy. It uses a precharge CMOS NOR/NOR structure. No practical limit on the

input variables is imposed. Several blocks of this PSAs can be concatenated to form a more

complicated sequential machine.With the existing available software tools, fast and dense

sequential blocks can be designed quickly. An example is given to illustrate the proposed

structure.
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